Localized Prostate Cancer: A Primer for Herbalists

Eric Yarnell, ND, RH(AHG)

2015

The Problem

Multiple Prostate Cancers

- > Every tumor is heterogeneous
- > Every tumor is monoclonal, frequently spread to multiple areas within prostate (Boyd 2012)
- > Every tumor is unique (very likely)
- Genetic similarities and differences between each patient's tumors

Epidemiology

- Most (70–80%) prostate cancer is localized and low-grade, non-metastatic, non-lethal (Eggener 2011)
- > Put another way, only 20–30% of men with prostate cancer have aggressive disease that spreads, causes symptoms, and/or causes death

Definition of Low-Grade

- Solution Series Ser
- → At most 4 positive biopsy cores<—localized</p>
- > <20% of cores are positive for cancer<—localized
- > No change over several years' time
- > PSA rises slowly (PSADT > 2 yr, PSAV < 1 ng/ml/yr)

Etiology

Background environmental factors

Diet and lifestyle

Genetic mutations

Cancer

Genetics

Overdiagnosis and Overtreatment

- Much low-grade pr ca is being diagnosed due to PSA screening = over diagnosed
- Many of these men are treated aggressively (surgery, radiation)
- This doesn't extend life or improve quality of life = over treated
- Our job is actually to provide alternatives to ineffective, harmful conventional therapy in men with low-grade disease

PSA Debacle

- > Richard Ablin, MD discovered PSA in 1970.
- > By 2010 he said, in the New York Times, "PSA has been a hugely expensive public health disaster."
- False positives very high, resulting in a LOT of unnecessary surgery and radiation
 - > False negatives are also sufficiently common to be a problem

Sensitivity: 67–80%

Specificity: 69–93%

PPV: 31-54%

NPV: 81-96%

NNS:>1,410

NNT: 48

References: Schröder 2009; Brawer 1999

tPSA Screening Studies

Trial	Population	Method	Follow-Up	Result
Andriole 2009 PLCO	US, n=76,693	DBR	7 yr	No benefit
Kjellman 2009 Stockholm	Sweden, n=1,782	DBR	12.9 yr	No benefit
Schröder 2009 ERSPC	Europe, n=182,160	DBR	9 yr	20% pr ca mortality decr
Labrie 2004 Quebec	Canada, n=46,486	R	15 yr	No benefit (also Ilic 2006)
Sandblom 2004 Norrköping	Sweden, n=9,026	R	11 yr	No benefit

Lifespan Issue

- How much time does this patient likely have left? (<u>livingto100.com</u> is one tool to decide)
- > 50-yr-old man with 35 year life expectancy: that's a long time for cancer to progress
- > 75-year-old man with 10 year life expectancy: not much time for cancer to progress

What to Do

First Do Nothing

- > Excellent site: http://www.prostatepointers.org/ww/wwopt.htm
- CT Tumor Registry: no need for aggressive tx for localized (Gleason <7) pr ca (Albertsen 2005)
- > VACURG trial: RP vs placebo no difference (Iversen 1995)
- Modern tPSA screened patients with low-grade dz have very low pr ca mortality (Lu-Yao 2009)
- Scandinavian PCG-4 trial: most rigorous and unbiased; at 10 yr slightly improved pr ca and overall survival in RP vs WW group (Bill-Axelson 2005)

More Watchful Waiting

- No benefit for patient over 70 from aggressive tx; indeed, some indications of harm (Fleming 1993)
- ⇒ 10-yr survival of British men with Gleason <7 and tPSA < 5 over 90% (Cuzick 2006)</p>
- Meta-analysis--screen-detected pr ca pt with Gleason <7 and tPSA <10, no benefit of RP over WW (Alibhai 2004)

Is Killing the Only Option?

Medicinal mushrooms Immune support

Redifferentiation Mahonia aquifolium

Convolvulus arvensis

Angiogenesis inhibition

Energy deprivation

Reduce

Redox modulators

Prevent new mutations

Metastasis inhibition Modified citrus pectin

Ornish Approach Original Trial

- n=93 (with T1c pr ca, Gleason 7 or less) (Ornish 2005)
- ⇒ Baseline tPSA 4–10 ng/ml; decline 4% on average
- Randomized to Ornish approach (pescovegan, stress reduction, exercise), vs watchful waiting
- > No Ornish patient required invasive treatment after 6 mon of treatment (6 controls did)

Ornish Approach Trial 2

- n=14, all T1c prostate cancer (Nguyen 2006)
- > 6 mon duration
- All on vegan diet, tai chi for stress reduction
- > PSADT change: 12 mon to 112 mon (average)
- > tPSA: fell in 9 of 10 evaluable patients

Additional Trials

- > Two-year follow-up: 2 of 43 (5%) of Ornish group vs 13 of 49 (27%) of controls had definitive therapy; no differences in PSA kinetics between groups (Frattaroli 2008)
- > Beneficial changes in risk factors with Ornish diet (Dewell 2008)
- Deneficial changes in gene expression with Ornish diet (Ornish 2008)

Vegan Diet Enhancements

- All organic food
- > Include some fish (Ornish even says to do this now)
- > Insulin sensitizing spices (cinnamon, cloves)
- > Omega 3 fatty acids sources--hemp, walnut, fish
- > Reduce omega 6 fatty acid intake
- > It's vegetarian not grainitarian: avoid sugar & starch
- > Exercise, stress reduction

Camellia sinensis (green tea)

- Meta-analysis of epidemiologic studies shows it is protective (Zheng 2011)
- > In particular protects against aggressive dz (Kurahashi 2007)
- Multiple mechanisms likely
- Clinical trial: n=60 men with HGPIN, green tea catechins 600 mg qd vs placebo x 1 yr, decreased progression to prostate cancer w/ treatment (Bettuzzi 2006)

Tomatoes

- > Meta-analysis finds high-level intake protective (Etminan 2004)
- > Is it really just a lycopene delivery vehicle?

Estrogen Catabolism

Cruciferous veggies preventative (Liu 2012)

Urine 2/16a Ratio and Soy

- > Higher urine 2/16α-hydroxyestrone ratio protective against prostate cancer in at least two studies (Barba 2009; Muti 2002)
- Each point higher tPSA equates to 14% decrease in 2-hydroxyestrone in urine (Teas 2005)
- Soy protein raises 2/16α-hydroxyestrone ratio in men at risk of pr ca (Hamilton-Reeves 2007)
- Soy foods: meta-analysis found intake protective (Hwang 2009)

The Totality of Soy

Isoflavones

Protein

Glycine max (soy)

Bowman-Birk protease

Inositol
hexaphosphate
(phytic acid)

Legumes and Isoflavones

- > Higher intake of legumes and higher serum genistein protective (Travis 2009)
- Soy protein intake (w/ or w/o isoflavones) reduces HGPIN compared to milk protein 40 g qd after 6 mon (Hamilton-Reeves 2008)
- Soy isoflavones 60 mg qd reduces tPSA in early prostate cancer (Kumar 2004)

Isoflavones Trial

- > n=52, full range of past tx (WW, RP, RT, ADT), full range of Gleason scores, 6 months (deVere White 2004)
- 3 450 mg genistein w/ 450 mg other isoflavones w/ Ganoderma mushroom polysaccharides qd
- > 8 of 13 with WW had no rise or >50% decline in tPSA

Importance of Equol Conversion

30-50% of adult population can form equol (Matthies 2008)

Isoflavones

- > Review of existing 11 clinical trials (Messina 2006)
- Dose range: 60–900 mg isoflavones/d from soy
- Sample sizes: 8–62
- > Duration: 20–360 d
- 2 4 of 8 studies in prostate cancer patients showed PSAV slowing

Isoflavones in kudzu

- Pueraria montana (kudzu)--10x higher levels than soy (Kaufman 1997)
- > Not present in pure white commercial starch (look for brown)
- Completely safe, widely used as food in Asia
- All legumes have isoflavones (black beans, navy beans good sources)--not all have huge PR firms

Artemisia annua

- Case studies with various human neoplasms (Singh 2006; Berger 2005).
- Iron not necessary for antineoplastic activity.
- Autoinduces intestinal CYP2D6; requires pulsed dosing (see next slide)
- Also metabolized by intestinal CYP3A4 (non-inducible).
- Other compounds synergistic (pump inhibitors, absorption enhancers)

Pharmacokinetics

Autoinduction (Simonsson 2003)

artemisinin and semi-synthetics

CYP2B6

CYP3A4 (if 2B6 is low)

Ref: Svensson 1999

CYP2A6 (minor)

deoxyartemisinin, other breakdown products

(semisynthetics only)

CYP2A6 (artesunate) CYP3A4/5 (artemether) CYP3A4 (arteether) red = inactive

dihydroartemisinin

UGTIA9 UGT2B7 αdihydroartemisininβ-glucuronide

Artemisinin dosing

- > Initial: 300-400 mg tid x 7 d
- Superiories Grapefruit juice first 3-4 days
- > Monitor for neuropathies (rare at 300 mg tid)
- Take with 3-5 ml tincture or 2-3 g capsules tid
- ➤ Enhanced by combination with butyric acid, 10+g qd po (Anticancer Res 2005;25:4325-31)

Results with Artemisinin in non-RP Patients

- > 6/10 (60%) overall met criteria for efficacy (PSA kinetics improvement or stabilization)
- 3/10 (30%) had negative PSADT and PSAV
- > 1/10 (10%) had biopsy-proven elimination of HGPIN
- > 2/10 (20%) lost to follow-up
- > 1/10 (10%) chose RP, no sign of spread at surgery
- > 1/10 (10%) provided no follow-up data

Age, Race	Stage, Gleason	Cores Positive	tPSA post-RP
61, W	T2a, 4+3, 4+4	5/12	0.03
54, W	T1c, 3+3	1/6	0.03
68, AA	T1c,?	6/6	0.06
63, W	T1c, 3+3	?	0.2
51, W	T2b, 5+4	?	0.47

Patient	Tx Duration	PSADT (yr)	PSAV (ng/ml/yr)
61, W	10 mon	negative	negative
54, W	4 mon	1.07	0.12
68, AA	3 mon	unknown	unknown
63, W	22 mon	0.75	3.17
51, W	10 mon	0.38	1.77

Immune Support

- Surprisingly little research (compared to other cancers) esp. w/ *Trametes versicolor* (clinical trials ongoing at Bastyr University right now)
- > Lentinan (from Lentinula edodes) 2 mg IV q wk very helpful in advanced disease (Tari 1994)
- Mushrooms by themselves are clearly not sufficient (deVere White 2002; Sumiyoshi 2010), must be combined with other tx

Modified Citrus Pectin

- Anti-metastatic by blocking galectin receptors
- > A reminder that metastasis is not random
- The only clinical study of this was a small one for prostate cancer
- Many preclinical studies
- Dose: 5 g qd-tid

Punica granatum Clinical Trials

- > Initial trial: All patients post-RP or radiation therapy, tPSA<5, 8 oz Pom Wonderful per day, PSADT increased from 15 to 54 mo. No significant adverse effects (Pantuck 2006)
- Small randomized trial confirmed these results in men with low-grade cancer using 1 and 3 g extracts (Paller 2013)

Pomegranate Synergy?

- > Seed oil, pericarp, and fermented juice
- > DU145 human pr ca cells tested in vitro
- All fractions synergistic
- > Food/herbs are not reducible without losing something.
- Ref: Lansky 2005

Anticancer Herbs of Interest

Annona muricata	Zizyphus spinosa
Catharanthus roseus	Cephalotaxus fortunei
Mahonia aquifolium	Dicentra formosa
Phytolacca americana	Trichosanthes kirilowii
Rheum palmatum	

Annona muricata

Catharanthus roseus

vinblastine

Phytolacca americana

Rheum palmatum

Zizyphus jujube

Photo © 2015 Heron Botanicals used with permission

Taxus brevifolia

Cephalotaxus harringtonii

References

Albertsen PC, Hanley JA, Fine J (2005) "20-year outcomes following conservative management of clinically localized prostate cancer" *JAMA* 293(17):2095-101.

Alibhai SM, Klotz LH (2004) "A systematic review of randomized trials in localized prostate cancer" Can J Urol 11(1):2110-7.

Andriole GL, Grubb RL III, Buys SS, et al. PLCO Project Team (2009) "Mortality results from a randomized prostate-cancer screening trial" *N Engl J Med* 360(13):1310-19.

Barba M, Yang L, Schünemann HJ, et al. (2009) "Urinary estrogen metabolites and prostate cancer: a case-control study and meta-analysis" *J Exp Clin Cancer Res* 28:135.

Berger TG, Dieckmann D, Efferth T, et al. (2005) "Artesunate in the treatment of metastatic uveal melanoma--first experiences" *Oncol Rep* 14(6):1599-603.

Bettuzzi S, Brausi M, Rizzi F, Castagnetti G, et al. (2006) "Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplassia: A preliminary report from a one-year proof-of-principle study" *Cancer Res* 66:1234-40. Bill-Axelson A, Holmberg L, Ruutu M, et al. (2005) "Scandinavian Prostate Cancer Group Study No. 4. Radical prostatectomy versus watchful waiting in early prostate cancer" *N Engl J Med* 352:1977-84. Boyd LK, Mao XY, Xue LY, et al. (2012) "High-resolution genome-wide copy-number analysis suggest a monoclonal origin of multifocal prostate cancer" *Genes Chromosomes Cancer* 51:579-89.

Brawer MK (1999) "Prostate-specific antigen: current status" CA Cancer J Clin 49:264-81.

Cuzick J, Fisher G, Kattan MW, et al. (2006) "Long-term outcome among men with conservatively treated localised prostate cancer" *Br J Cancer* 95(9):1186-94.

deVere White RW, Hackman RM, Soares SE, et al. (2002) "Effects of a mushroom mycelium extract on the treatment of prostate cancer" *Urology* 60(4):640-4.

deVere White RW, Hackman RM, Soares SE, et al. (2004) "Effects of a genistein-rich extract on PSA levels in men with a history of prostate cancer" *Urology* 63(2):259-63.

Dewell A, Weidner G, Sumner MD, et al. (2008) "A very-low-fat vegan diet increases intake of protective dietary factors and decreases intake of pathogenic dietary factors" *J Am Diet Assoc* 108:347-56.

Eggener SE, Scardino PT, Walsh PC, et al. (2011) "Predicting 15-year prostate cancer specific mortality after radical prostatectomy" *J Urol* 185:869–75.

Etminan M, Takkouche B, Caamaño-Isorna F (2004) "The role of tomato products and lycopene in the prevention of prostate cancer: a meta-analysis of observational studies" *Cancer Epidemiol Biomarkers Prev* 13(3):340-5.

Fleming C, Wasson JH, Albertsen PC, et al. (1993) "A decision analysis of alternative treatment strategies for clinically localized prostate cancer. Prostate Patient Outcomes Research Team" *JAMA* 269(20):2650-8.

Frattaroli J, Weidner G, Dnistrian AM, et al. (2008) "Clinical events in Prostate Cancer Lifestyle Trial: Results from two years of follow-up" *Urology* 72:1319-23.

Hamilton-Reeves JM, Rebello SA, Thomas W, et al. (2007) "Soy protein isolate increases urinary estrogens and the ratio of 2:16alpha-hydroxyestrone in men at high risk of prostate cancer" *J Nutr* 137(10):2258-63. Hamilton-Reeves JM, Rebello SA, Thomas W, et al. (2008) "Effects of soy protein isolate consumption on prostate cancer biomarkers in men with HGPIN, ASAP, and low-grade prostate cancer" *Nutr Cancer* 60(1): 7-13.

Heath EI, Heilbrun LK, Li J, et al. (2010) "A phase I dose-escalation study of oral BR-DIM (BioResponse 3,3'- Diindolylmethane) in castrate-resistant, non-metastatic prostate cancer" *Am J Transl Res* 2(4):402-11. Iversen P, Madsen PO, Corle DK (1995) "Radical prostatectomy versus expectant treatment for early carcinoma of the prostate. Twenty-three year follow-up of a prospective randomized study" *Scand J Urol Nephrol Suppl* 172:65-72.

Kaufman PB, Duke JA, Brielmann H, et al. (1997) "A comparative survey of leguminous plants as sources of the isoflavones, genistein and daidzein: Implications for human nutrition and health" *J Altern Complement Med* 3(1):7-12.

Kjellman A, Akre O, Norming U, et al. (2009) "15-Year follow up of a population based prostate cancer screening study" *J Urol* 181:1615–21.

Kong D, Heath E, Chen W, et al. (2012) "Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM" *PLoS One* 7(3):e33729.

Kumar NB, Cantor A, Allen K, et al. (2009) "The specific role of isoflavones in reducing prostate cancer risk" *Prostate* 59:141-7.

Kurahashi N, Sasazuki S, Iwasaki M, et al. (2007) "Green tea consumption and prostate cancer risk in Japanese men: A prospective study" *Am J Epidemiol* 167(1):71-77.

Labrie F, Candas B, Cusan L, et al. (2004) "Screening decreases prostate cancer mortality: 11-year follow-up of the 1988 Quebec prospective randomized controlled trial" *Prostate* 59(3):311–18.

Lansky EP, Jiang W, Mo H, et al. (2005) "Possible synergistic prostate cancer suppression by anatomically discrete pomegranate fractions" *Invest New Drugs* 23(1):11-20.

Liu B, Mao Q, Cao M, Xie L (2012) "Cruciferous vegetables intake and risk of prostate cancer: A meta-analysis" *Int J Urol* 19(2):134-41.

Lu-Yao GL, Albertsen PC, Moore DF, et al. (2009) "Outcomes of localized prostate cancer following conservative management" *JAMA* 302(11):1202-9.

Markushin Y, Gaikwad N, Zhang H, et al. (2006) "Potential biomarker for early risk assessment of prostate cancer" *Prostate* 66(14):1565-71.

Matthies A, Clavel T, Gütschow M, et al. (2008) "Conversion of daidzein and genistein by an anaerobic bacterium newly isolated from the mouse intestine" *Appl Environ Microbiol* 74(15):4847-52.

Matthies A, Loh G, Blaut M, Braune A (2012) "Daidzein and genistein are converted to equol and 5-hydroxy-equol by human intestinal *Slackia isoflavoniconvertens* in gnotobiotic rats" *J Nutr* 142(1):40-6. Messina M, Kucuk O, Lampe JW (2006) "An overview of the health effects of isoflavones with an emphasis on prostate cancer risk and prostate-specific antigen levels" *J AOAC Int* 89(4):1121-34. Muti P, Westerlind K, Wu T, et al. (2002) "Urinary estrogen metabolites and prostate cancer: A case-control study in the United States" *Cancer Causes Control* 13(10):947-55.

Nguyen JY, Major JM, Knott CJ, et al. (2006) "Adoption of a plant-based diet by patients with recurrent prostate cancer" *Integr Cancer Ther* 5(3):214-23.

Ornish D, Weidner G, Fair WR, et al. (2005) "Intensive lifestyle changes may affect the progression of prostate cancer" *J Urol* 174:1065-70.

Ornish D, Magbanua MJM, Weidner G, et al. (2008) "Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention" *Proc Natl Acad Sci USA* 105(24):8369-74. Paller CJ, Ye X, Wozniak PJ, et al. (2013) "A randomized phase II study of pomegranate extract for men with rising PSA following initial therapy for localized prostate cancer" *Prostate Cancer Prostatic Dis* 16(1): 50-5.

Pantuck AJ, Leppert JT, Zomorodian N, et al. (2006) "Phase II study of pomegranate juice for men with rising prostate-specific antigen following surgery or radiation for prostate cancer" *Clin Cancer Res* 12(13): 4018-26.

Sandblom G, Varenhorst E, Lofman O, et al. (2004) "Clinical consequences of screening for prostate cancer: 15 years follow-up of a randomised controlled trial in Sweden" *Eur Urol* 46:717–24.

Schröder FH, Hugosson J, Roobol MJ, et al. (2009) "Screening and prostate-cancer mortality in a randomized European study" *N Engl J Med* 360:1320-8.

Simonsson USH, Jansson B, Hai TN, et al. (2003) "Artemisinin autoinduction is caused by involvement of cytochrome P450 2B6 but not 2C9" *Clin Pharmacol Ther* 74(1):32-43.

Singh NP, Panwar VK (2006) "Case report of a pituitary macroadenoma treated with artemether" *Integr* Cancer Ther 5(4):391-4.

Sumiyoshi Y, Hashine K, Kakehi Y, et al. (2010) "Dietary administration of mushroom mycelium extracts in patients with early stage prostate cancers managed expectantly: A phase II study" *Jpn J Clin Oncol* 40(10): 967-72.

Svensson US, Ashton M (1999) "Identification of the human cytochrome P450 enzymes involved in the in vitro metabolism of artemisinin" *Br J Clin Pharmacol* 48(4):528-35.

Tari K, Satake I, Nakagomi K, et al. (1994) "Effect of lentinan for advanced prostate carcinoma" *Acta Urol Japon* 40:119-23 [in Japanese].

Teas J, Cunningham JE, Fowke JH, et al. (2005) "Urinary estrogen metabolites, prostate specific antigen, and body mass index among African-American men in South Carolina" *Cancer Detect Prev* 29(6):494-500.

Travis RC, Spencer EA, Allen NE, et al. (2009) "Plasma phyto-oestrogens and prostate cancer in the European Prospective Investigation into Cancer and Nutrition" *Br J Cancer* 100(11):1817-23.

Zheng J, Yang B, Huang T, et al. (2011) "Green tea and black tea consumption and prostate cancer risk: An exploratory meta-analysis of observational studies" *Nutr Cancer* 63(5):663-72.

Glossary

ADT = androgen deprivation therapy cdTRUSP = color Doppler transrectal ultrasound of the prostate CRP = C-reactive protein CTC = circulating tumor cells DRE = digital rectal exam E1 = estrone; E2 = estradiol eMRS = endorectal magnetic resonance spectroscopy fPSA = free PSA GnRH = gonadotropin-releasing hormone HGPIN = high-grade prostatic intraepithelial neoplasia HIFU = high-intensity focused ultrasound IGF-1 = insulin-like growth factor-1

NNS = number needed to screen NNT = number needed to treat NPV = negative predictive value PAP = prostatic acid phosphatase PPV = positive predictive value PSA = prostate-specific antigen PSADT = PSA doubling time PSAV = PSA velocity RP = radical prostatectomy T1C = stage T1C of prostate cancer (PSA detected only cancer) tPSA = total PSA TRUSP = transrectal ultrasound of the prostate UTI = urinary tract infection WW = watchful waiting