Hops (Humulus lupulus) and Methicillin-Resistant Staphylococcus aureus (MRSA): A Tale of Discovery

Daniel Gagnon
MS, RH (AHG)
American Herbalist Guild
October 15-19, 2015

Staph infection sparks curiosity

• In 1997, I contracted a head-to-toe Staph infection
• MD diagnosed infection and prescribed antibiotics
• Leaving for Nepal one week later
• Concerned about effect of antibiotics on GI system
• Unwilling to take them
• Decided on a combination of Usnea (Usnea barbata) lichen and Hops (Humulus lupulus) strobile extracts externally and internally
• Infection gone within a week
• Traveled without any GI incidents

Skin infections and MRSA

• Herbalists frequently encounter skin infections in their practice
• Skin infections getting more challenging because of ever-increasing microbial multi-drug resistance
• Community-associated MRSA infections now the dominant cause of skin and soft tissue infections
• CA-MRSA infections represent the majority of patients with skin and soft tissue infections being treated at emergency departments
• MRSA-associated hospitalization have increased from 8% in 1993, to 44% in 1998, and to 65% in 2005

Evaluation of Selected Medicinal Plants Extracted in Different Ethanol Concentrations for Antibacterial Activity Against Human Pathogens

Chitra Wendakoon, PhD
Peter Calderon, PhD
Daniel Gagnon, MS

Initial in vitro study

• In 2007, Herbs, Etc. sponsored a study at New Mexico State University of eight herbs: boldo, buchu, Echinacea angustifolia, hops, licorice, Oregon grape, usnea, and yerba mansa

Aim of the study

• Perform a comparative study to evaluate the relative effectiveness of the antimicrobial properties of eight medicinal herb extracts

Study design

• Extracts were prepared with 3 different ethanol concentrations (50%, 70% and 90%)
• Screened for antibacterial activity against four Gram-positive and four Gram-negative pathogens
• Used standard well assay and micro-broth dilution method
• Determined minimum bactericidal concentrations (MBCs) for each extract
Plants and Bacterial Strains Used in the Study

Table 1. Plants used in the study

<table>
<thead>
<tr>
<th>Common name</th>
<th>Latin binomial</th>
<th>Family</th>
<th>Plant part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boldo</td>
<td>Peumus boldus</td>
<td>Monimiaceae</td>
<td>Leaf (dry)</td>
</tr>
<tr>
<td>Buchu</td>
<td>Agathosma betulina</td>
<td>Rutaceae</td>
<td>Leaf (dry)</td>
</tr>
<tr>
<td>Echinacea angustifolia</td>
<td>Echinacea angustifolia</td>
<td>Asteraceae</td>
<td>Root (dry)</td>
</tr>
<tr>
<td>Hops</td>
<td>Humulus lupulus</td>
<td>Cannabaceae</td>
<td>Strobile (dry)</td>
</tr>
<tr>
<td>Licorice</td>
<td>Glycyrrhiza glabra</td>
<td>Fabaceae</td>
<td>Root (dry)</td>
</tr>
<tr>
<td>Oregon grape</td>
<td>Mahonia aquifolium</td>
<td>Berberidaceae</td>
<td>Root (dry)</td>
</tr>
<tr>
<td>Usnea</td>
<td>Usnea barbata</td>
<td>Usneaceae</td>
<td>Lichen (dry)</td>
</tr>
<tr>
<td>Yerba mansa</td>
<td>Anemopsis californica</td>
<td>Saururaceae</td>
<td>Root (dry)</td>
</tr>
</tbody>
</table>

Table 2. Bacterial strains used in the study

<table>
<thead>
<tr>
<th>Gram-positive:</th>
<th>Gram-negative:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus (ATCC 25923)</td>
<td>Escherichia coli (ATCC 25922)</td>
</tr>
<tr>
<td>Staphylococcus aureus (COL)*</td>
<td>Pseudomonas aeruginosa (ATCC 27853)</td>
</tr>
<tr>
<td>Staphylococcus epidermidis (ATCC 12228)</td>
<td>Salmonella enteritidis (ATCC 13076)</td>
</tr>
<tr>
<td>Streptococcus pyogenes (ATCC 19615)</td>
<td>Klebsiella pneumoniae (ATCC 13883)</td>
</tr>
</tbody>
</table>

*The MRSA culture was kindly provided by Dr. J. Gustafson, Department Biology, New Mexico State University

Analysis

- Boldo, hops, licorice, and yerba mansa possess strong inhibitory activities on all four Gram-positive organisms tested at all levels of ethanol
- No inhibitory action detected against the four Gram-negative bacteria tested in this study
- Antibacterial activity of the other plant extracts varied depending on the ethanol level (Table 3)
- Buchu at 50% ethanol, Oregon grape at 70% ethanol were more inhibitory towards MRSA than either at 90% ethanol level
- Hops showed the strongest antibacterial activity and, further, its activity was highest at 90% ethanol level
- The results from the broth dilution study were in agreement with the well assay, confirming that the extracts of boldo, hops, licorice, and yerba mansa are potentially effective antibacterial agents

Conclusions

- Thousands of scientific papers describe the antimicrobial activities of plant extracts
- However, no systematic studies have been conducted on the effects of ethanol concentration on the antimicrobial activity of specific herbs
- Due to the complex nature of the phytochemicals present in herbs, extraction solvent system should be taken into consideration
- This study provides data on the importance of various ethanol concentration on the antimicrobial activity of herbs
- It also demonstrated that the ethanol extracts of Hops offered significant potential for the development of novel antibacterial therapies
- More studies on the antimicrobial activity of Hops against specific bacteria are needed

Second study

The potential antibacterial properties of Hops (*Humulus lupulus*) extracts against methicillin-resistant *Staphylococcus aureus* (MRSA)

Daniel Gagnon, MS, Herbs, Etc.
Chitra Wendakoon, PhD, Independent Consultant
Bob Smith, BS, HopSteiner
Jeremy Leker, BS, HopSteiner

Primary aim of the study

- Investigate the effectiveness of the *in vitro* antibacterial activity of five Hops (*Humulus lupulus*) strobile ethanolic extracts containing 10%, 30%, 50%, 70%, and 95% ethanol and three *H. lupulus* isolated constituents, alpha acids (α-acids), beta-acids (β-acids), and xanthohumol against methicillin-resistant *Staphylococcus aureus* (MRSA)

Secondary aims of the study

- Chemically analyze whole and ground strobiles as well as the extracts by quantifying the amounts of three constituents: α-acids, β-acids, and xanthohumol immediately after making the extracts as well as one year later and two years later
- Compare and contrast the constituents in the five ethanolic extracts and the three isolated constituents as to their relative MRSA antimicrobial activity

Results of HPLC analysis:

Chemical characterization of *H. lupulus* extracts

- Performed a HPLC analysis of five *H. lupulus* ethanolic extracts, as well as whole and ground strobiles after one and two year storage
- Evaluated the amount of constituents loss during cryogenic grinding process of whole *H. lupulus*
- Calculated the difference in amount of constituents immediately after extraction, as well as after one year and two years of storage

HPLC analysis of *Humulus lupulus* ethanolic extracts and strobiles at the beginning of the experiment

<table>
<thead>
<tr>
<th>Constituents</th>
<th>10% Ethanol</th>
<th>30% Ethanol</th>
<th>50% Ethanol</th>
<th>70% Ethanol</th>
<th>95% Ethanol</th>
<th>Whole Hops</th>
<th>Ground Hops</th>
</tr>
</thead>
</table>

HPLC analysis was performed by Iacosa & Co., 2013
HPLC analysis of *Humulus lupulus* ethanolic extracts and strobiles stored for one year

Constituents (g/100 ml)

<table>
<thead>
<tr>
<th>Ethanol (%)</th>
<th>Alpha acids</th>
<th>Beta acids</th>
<th>Xanthohumol</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Y1</td>
<td>Y2</td>
<td>N.D.</td>
</tr>
<tr>
<td>30</td>
<td>0.003</td>
<td>0.0008</td>
<td>0.0004</td>
</tr>
<tr>
<td>50</td>
<td>0.016</td>
<td>0.0068</td>
<td>0.0011</td>
</tr>
<tr>
<td>70</td>
<td>0.040</td>
<td>0.0130</td>
<td>0.0020</td>
</tr>
<tr>
<td>95</td>
<td>0.081</td>
<td>0.043</td>
<td></td>
</tr>
</tbody>
</table>

N.D.: Not Detectable

Percent of constituents from *Humulus lupulus* ethanol extracts remaining when stored for one or two years

<table>
<thead>
<tr>
<th>Ethanol concentration (%)</th>
<th>One year old extract</th>
<th>Two years old extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha acids</td>
<td>Beta acids</td>
<td>Xanthohumol</td>
</tr>
<tr>
<td>10%</td>
<td>7.5</td>
<td>0.2</td>
</tr>
<tr>
<td>30%</td>
<td>26.7</td>
<td>2.9</td>
</tr>
<tr>
<td>50%</td>
<td>82.5</td>
<td>67.9</td>
</tr>
<tr>
<td>70%</td>
<td>90.1</td>
<td>95.2</td>
</tr>
<tr>
<td>95%</td>
<td>95.8</td>
<td>95.1</td>
</tr>
</tbody>
</table>

Whole Strobiles |
| 86.8 | 75.4 | 95.6 |

Ground Strobiles |
| 92.9 | 86.9 | 95.6 |

Antibacterial activity of *H. lupulus* strobile extracts against methicillin-resistant *S. aureus* (MRSA)

<table>
<thead>
<tr>
<th>Ethanol concentration (%)</th>
<th>Zone Diameter (mm)</th>
<th>Zone Diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus (MRSA)</td>
<td>E. coli</td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>30%</td>
<td>8</td>
<td>N</td>
</tr>
<tr>
<td>50%</td>
<td>8</td>
<td>N</td>
</tr>
<tr>
<td>70%</td>
<td>12</td>
<td>N</td>
</tr>
<tr>
<td>95%</td>
<td>14</td>
<td>N</td>
</tr>
</tbody>
</table>

Ampicillin (µg) |
| 10 | 1 |

Ethanol (10, 30, 70, 95%) |
| N | N |
Antibacterial activity of *H. lupulus* ethanolic extracts against methicillin-resistant *S. aureus* ATCC 43300

Minimum bactericidal concentrations (MBC) of *Humulus lupulus* ethanolic extracts

Minimum bactericidal concentrations (MBC) of diluted *H. lupulus* isolated constituents

Antibacterial activity of diluted *H. lupulus* isolated constituents against methicillin-resistant *S. aureus* (MRSA)
Bactericidal activity of *H. lupulus* extract (95% ethanol) against methicillin-resistant *S. aureus* (MRSA)

Growth was monitored for 24h in the presence of 100µl of the extract (●), 200µl of the extract (▲) and in the absence of the extract (●).

Discussion

- Plant metabolites that display super potent biological activity are relatively rare
- Very large amounts of active constituents, essential oils, and other compounds are needed to act effectively as antibiotics
- The minimum inhibitory concentration for most herbs are in the range of 100 to 1,000µg/ml of active constituents or higher
- However, the *Humulus lupulus*’ constituent beta-acids was active in the 0.09µg/ml range
- *In vitro* *Hops (Humulus lupulus)* is active against MRSA and is comparable to the few antibiotics that are still active against this bacteria

Clinical notes: MRSA skin infection

- 24 years old man, mechanic by trade, diagnosed with MRSA skin infection under his nail bed
- Second MRSA infection affecting a finger in six years
- Doctors cut the nail bed to drain the infection
- First infection took two rounds of antibiotics to stop it. This time, on third round of antibiotic
- MD told him he would need to cut his finger at the first joint if unable to stop the infection – kept getting worse
- Applied Hops (*Humulus lupulus*) 95% ethanol extract compresses on the infection
- Within two weeks the infection was gone
- Six years have now elapsed since that incident and he has remained free from MRSA infections

Conclusions

- Much work needed to be done to elucidate the secrets of the antibacterial properties of Hops (*Humulus lupulus*)
- The research presented here points toward the usefulness of the strobile against methicillin-resistant *S. aureus* (MRSA)
- Initial clinical results suggest that Hops may be useful against MRSA
- Keep Hops strobiles frozen until use
- High ethanol level essential to make a strong and effective Hops extract
- High ethanol level is essential to safeguard the potency of Hops extracts over time

Contact Information

Daniel Gagnon
MS, RH (AHG)
1340 Rufina Circle
Santa Fe, NM 87507
(505) 471-6488 ext. 226
daniel.gagnon@herbsetc.com
www.herbsetc.com