History
Chronic fatigue syndrome (CFS), known in Europe as myalgic encephalomyelitis, appears to have been a health issue for at least two centuries. In the 19th century, Dr. George Beard used the term neurasthenia to label a condition resembling CFS. In the 1930s through the 1950s, conditions marked by prolonged fatigue were noted in the United States as well as other countries (Schafer, 2002). From the 1970s after an influenza ridden winter in Incline Village, Nevada, Drs. Paul Cheney and Daniel Peterson observed a cluster of patients who suffered from unrelenting fatigue and were unable to recover (Peterson et al., 1986). Their interest in these patients brought renewed attention to the condition, which was originally thought to be a communicable disease with a viral related etiology. This later proved to be incorrect and the condition become known as CFS.

Defining CFS
CFS is classified as a syndrome, not a disease. Its most notable symptom is unrelenting fatigue. Being a diagnosis of exclusion, other illnesses that could account for the fatigue are first ruled out. There are no tests that will definitively diagnose CFS. The Centers for Disease Control, in a Prevention Case Definition published in 1994, described eight symptoms related to CFS. The patient with CFS will suffer from four of the eight symptoms listed in Table 1. The symptoms must have persisted or recurred during six or more consecutive months of illness, and must not have predated the fatigue. However, many people who appear to have this unrelenting fatigue often cannot be diagnosed with CFS according to the CDC definition.

While depressive patients commonly cope with fatigue, a depressed person will often improve with physical activity and exertion, while a CFS person normally worsens with physical activity. A study by White et al (2001) compared fatigue syndromes with mood disorders, comparing them with post-mononucleosis infection outcomes. They found that mononucleosis patients, although their blood cell counts were in normal range, may have significant fatigue for...
months. Another unique response that sets patients with CFS apart from those with other fatiguing illnesses is that rest does not alleviate the fatigue. Without a doubt, CFS patients have great difficulty dealing with daily activity. Patients report decreased quality of life, sense of well-being, and libido. Duration of three to five years for such symptoms is common (Hardt et al., 2001).

Because many of the symptoms are subjective and cannot be observed or confirmed by a physician, the condition is referred to as medically unexplained or “functional”. Unfortunately many physicians use the term functional to mean psychosomatic, as in imagined. However, the rapidly expanding field of psychoneuroimmunology suggests that disease processes that don’t involve both the mind and the body are the exception.

Although considered controversial, there is a grouping of conditions called Functional Somatic Syndromes (Colby, 1999; Goudsmit and Shepherd, 1999; Wessely et al., 1999). These disorders are called functional because the medical specialty labeling the condition is unable to find aberrant biochemical processes (although improved laboratory technology is changing this).

When examining CFS, a single patient may exhibit signs and symptoms of fibromyalgia (FM), tension headaches, multiple chemical sensitivity, food allergy and irritable bowel syndrome. Revisiting Hans Selye’s (1976) description of the General Adaptation Syndrome and the more modern model of allostasis developed by McEwen (2003) and Schulkin (2003), we are reminded that an environmental trigger may result in a reorganization of physiology inducing a number of systemic effects.

Chaudhuri et al (2003) points out that the complex of symptoms that include immunological shifts, metabolic disruption, neurological changes and endocrine modifications that occur with Functional Somatic Syndromes, are expressed in a manner that is unique to the individual. This suggest the hypothesis that fibromyalgia, chronic fatigue syndrome, migraines, irritable bowel syndrome, atypical facial pain and premenstrual dysphoric syndrome, may be more similar than dissimilar and may share some particular etiologic "step" (Grauer et al., 1996; Wessely et al., 1999).

Theories of etiology

The etiology of chronic fatigue syndrome is obscure and controversial, leading to considerable obstacles to both clear diagnosis and to effective treatment. To make these conditions even more difficult to understand, it appears that CFS is triggered from a number of causes, such as infection, exposure to toxic chemicals, and psychosocial stressors (Gupta, 2002; Vojdani and Lapp, 1999). Whatever the initial insult, an upregulation of the coping response persists, which becomes a pathophysiological repeating loop (Gupta, 2002). Recent evidence suggests that neurological and psychological factors, as well as endocrine and immune factors are key in functional somatic syndromes (Gupta, 2002; Sharpe and Carson, 2001; Vojdani and Lapp, 1999; Wessely et al., 1999).

Neurotransmitter alterations, as well as metabolic shifts in the brain occur in patients with CFS (Chaudhuri et al., 2003; Nachtsheim et al., 2002). Additionally, these patients appear to have diffuse cerebral perfusion, suggesting a rationale behind the decline in cognitive function, sleep quality, and energy levels often seen with the condition (Schmaling et al., 2003).

A possible key neurological process in this initial stage may involve the amygdala. The amygdala (and the bed nucleus of the stria terminus) are involved in primal emotions such as fear and anxiety (Sapolsky, 2003). Gupta (2002) suggests a conditioned network created in the amygdala due to habituation to chronic signals arising from the viscera. Further support for this is shown by Vyss et al (2002) in demonstrating impairment of long-term potentiation of the

Table 2: Functional Somatic Syndromes

<table>
<thead>
<tr>
<th>Specialty</th>
<th>Syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastroenterology</td>
<td>IBS</td>
</tr>
<tr>
<td>Gastroenterology</td>
<td>Non-ulcer dyspepsia</td>
</tr>
<tr>
<td>Gynaecology</td>
<td>Chronic pelvic pain</td>
</tr>
<tr>
<td>Rheumatology</td>
<td>Fibromyalgia</td>
</tr>
<tr>
<td>Cardiology</td>
<td>Atypical or non-cardiac chest pain</td>
</tr>
<tr>
<td>Respiratory medicine</td>
<td>Hyperventilation syndrome</td>
</tr>
<tr>
<td>Infectious disease</td>
<td>CFS</td>
</tr>
<tr>
<td>Neurology</td>
<td>Tension headache</td>
</tr>
<tr>
<td>Allergy</td>
<td>Multiple chemical sensitivity</td>
</tr>
<tr>
<td>Dentistry</td>
<td>TMJ dysfunction</td>
</tr>
<tr>
<td>Dentistry</td>
<td>Atypical facial pain</td>
</tr>
</tbody>
</table>

(2003) and Schukkin (2003), we are reminded that an environmental trigger may result in a reorganization of physiology inducing a number of systemic effects.

Chaudhuri et al (2003) points out that the complex of symptoms that include immunological shifts, metabolic disruption, neurological changes and endocrine modifications that occur with Functional Somatic Syndromes, are expressed in a manner that is unique to the individual. This suggest the hypothesis that fibromyalgia, chronic fatigue syndrome, migraines, irritable bowel syndrome, atypical facial pain and premenstrual dysphoric syndrome, may be more similar than dissimilar and may share some particular etiologic "step" (Grauer et al., 1996; Wessely et al., 1999).

Theories of etiology

The etiology of chronic fatigue syndrome is obscure and controversial, leading to considerable obstacles to both clear diagnosis and to effective treatment. To make these conditions even more difficult to understand, it appears that CFS is triggered from a number of causes, such as infection, exposure to toxic chemicals, and psychosocial stressors (Gupta, 2002; Vojdani and Lapp, 1999). Whatever the initial insult, an upregulation of the coping response persists, which becomes a pathophysiological repeating loop (Gupta, 2002). Recent evidence suggests that neurological and psychological factors, as well as endocrine and immune factors are key in functional somatic syndromes (Gupta, 2002; Sharpe and Carson, 2001; Vojdani and Lapp, 1999; Wessely et al., 1999).

Neurotransmitter alterations, as well as metabolic shifts in the brain occur in patients with CFS (Chaudhuri et al., 2003; Nachtsheim et al., 2002). Additionally, these patients appear to have diffuse cerebral perfusion, suggesting a rationale behind the decline in cognitive function, sleep quality, and energy levels often seen with the condition (Schmaling et al., 2003).

A possible key neurological process in this initial stage may involve the amygdala. The amygdala (and the bed nucleus of the stria terminus) are involved in primal emotions such as fear and anxiety (Sapolsky, 2003). Gupta (2002) suggests a conditioned network created in the amygdala due to habituation to chronic signals arising from the viscera. Further support for this is shown by Vyss et al (2002) in demonstrating impairment of long-term potentiation of the
The hippocampus, while facilitating long-term potentiation in the amygdala under such conditions.

Vyass et al. (2003) also demonstrate the extension of neuronal dendrites to the amygdala and bed nucleus of the stria terminalis under CFS-like conditions while the hippocampal dendrites atrophy. Aberrant signalling from the viscera can be involved in the induction of primal emotions and if continued can create a positive feedback between the viscera and the limbic system that becomes increasingly difficult to inhibit.

Hypothalamus-Pituitary-Adrenal axis alteration appears to be a common theme between many of the Functional Somatic Syndromes such as CFS, FM, and Multiple Chemical Sensitivity (Komaroff and Buchwald, 1998; Racciatti et al., 2001). HPA alterations also affect the immune function (Komaroff and Buchwald, 1998). The "alarm" cytokines, thought of as proinflammatory, are elevated in CFS patients and this seems to continue for years (Torry et al., 2000).

The allostasis model of disease progression illustrates the process of physiological dysregulation (Figure 1). There are a variety of differing causes that initiate syndromes, and possibly another set of factors that enable disease patterns. A single insult such as influenza, psychological trauma, or toxic exposure, although possibly minor, combined with many other variables such as life stressors, eating habits, environmental exposures, and genomic makeup could combine to create a burden on the system.

The suggestion has been made that CFS is related to altered mitochondrial function. Energy dynamics drive nutrient transport into the cell and the transport of waste products out of the cell. ATP comes from the mitochondrial process of oxidative phosphorylation. Perhaps many of the fatigue syndromes we see are a consequence of changing dynamics of the energy gradients, or the so-called redox potential (reduction/oxidation potential) within cells (Bland, 2003). Proinflammatory cytokines (IL-1, IL-6, TNF-α, and IFN-γ) appear to be upregulated in many cases of CFS. In turn this induces nitric oxide (NO) and superoxide release from macrophages. The combination of NO and superoxide rapidly reacts yielding peroxynitrite. If this becomes a positive feedback loop, it may result in cellular damage and ultimately alter mitochondrial dynamics.

Treatment

CFS has a multifactorial etiology and any one therapeutic molecule is unlikely to effectively treat the syndrome. CFS therapy is best tailored to the individual patient (Afari and Buchwald, 2003). With the possibility of over ten million genomic single nucleotide polymorphisms (SNPs) (Gabriel et al., 2002), a sensible conclusion is that there is no “average patient.” Nevertheless, a central therapeutic theme for CFS would focus on reducing the oxidative “load” on the system.
Decreasing exposure to oxidative triggers and enhancing the antioxidant capacity is an obvious clinical strategy. These two steps alone may enhance cellular and mitochondrial function and therefore improve production of ATP and cellular nutrition. Other steps might include modulation of the hypothalamus–pituitary–adrenal axis, quieting excessive sensory and immunologic stimulation of the CNS, and stimulating hepatic detoxification. This suggests a pharmacological approach using multiple agents (Pall, 2000). Many CFS sufferers, however, rely on phytotherapeutic modalities as conventional medicine has little to offer.

Phytotherapy

An evolutionary view would suggest that therapies using one compound to effect change in mammalian physiology is naive. Instead, evolutionary history supports a more intricate notion – exposure to phytochemical matrices. The multi-component nature of medicinal plants and formulations of medicinal plants mimics what our ancestor’s genomes experienced regularly as they foraged for foods. The exposure to one chemical at a time, in an evolutionary time scale, is completely novel to biology. For over 200 million years of evolving mammalian physiology, medicinal, and food plants, have always been multi-component mixtures of nutrients and other metabolites.

Furthermore, a polyvalent mode of activity is common in the interface of phytochemistry with human systems. Messina et al. (2001) point out that the allelochemicals (protective phytochemicals) of plants can have complementary and overlapping activities such as the alteration of biotransformation enzyme activities, anti-inflammatory effects, stimulation of the immune system, reduction of platelet aggregation, modulation of cholesterol synthesis and hormone metabolism, reduction of blood pressure, and antimicrobial effects.

Moreover, a number of researchers have proposed that multi-component pharmacological agents that hit multiple targets, impact the complex equilibrium of whole cellular networks more favorably than drugs that act on a single target (Ágoston et al., 2005; Briskin, 2000; Coermely, 2004; Coermely et al., 2005; Keith et al., 2005; Keith and Zimmermann, 2004; Werner, 2005). Keith and Zimmerman (2004) suggest that many genes might need complementary action to modify disease processes. In other words, efficacious therapy might depend on perturbing more than one target. Additionally, multi-target agents need effect their targets only partially, which corresponds well with the presumed low-affinity interactions of medicinal plants (Ágoston et al., 2005; Coermely, 2004; Coermely et al., 2005; Keith et al., 2005; Keith and Zimmermann, 2004; Spelman, 2005; Spelman et al., 2006). The partial “perturbations” of medicinal plants on a pharmacological network mimic accurately physiological scenarios where hundreds of different enzyme systems and receptor types and subtypes are triggered simultaneously (Ágoston et al., 2005). Thus, it seems obvious, to at least this author, that medicinal plants are quite sensible at dealing with the complexity of human physiology, whether it involves neuroendocrine processes, detoxification processes, or immunological factors.

Due to the dysregulation of immune function, immunomodulators as a class of therapeutic agents are indicated. The botanical immunomodulators may be defined as herbs that through the dynamical regulation of informational molecules (cytokines, hormones, neurotransmitters, other peptides etc.) alter the activities of the immune system (Spelman et al., 2006). Modulation of the cytokines, specifically interleukin (IL) -1, IL-2, IL-6, TNF-α and IFN do demonstrate effects.
on the HPA axis (McCance, 2001). It follows that specific immunomodulators have the potential to alter the stress axis. Additionally, many of the cytokines affect the brain, inducing behavioral effects (Kronfol & Remick 2000). This may be why this category of herbs is used in such diverse conditions and suggests further understanding of these herbs is yet to come. In any case, with their ability to modulate cytokine expression and very likely other messenger molecules, this category is particularly useful in managing the allostatic load represented by CFS. This could quiet the overexpression of proinflammatory cytokines and result in a downregulation of the immunological portion of the repeating cycle seen in CFS. But this alone may not shift the repetitive attempts at adaptation that CFS represents. Other systems may need to be addressed directly.

The endocrine system can be addressed through the addition of the adaptogens. Downregulation of the HPA axis is commonly found in CFS. Adaptogens have demonstrated regulatory effects on energy pathways in addition to modulation of the biosynthesis of nucleic acids, the biosynthesis of proteins, the limitation of catecholamine overproduction, and the reduction of lipid peroxidation (Panossian et al., 1999). In other

Table 4: Phytotherapeutic Approach

<table>
<thead>
<tr>
<th>Adaptogens, Endocrine Strategies</th>
<th>Immunomodulators, Immunological Strategies</th>
<th>Nervines, Neurological Strategies</th>
<th>Hepatics, Detoxification Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astragalus spp.</td>
<td>Aralia membranacea</td>
<td>Avena sativa</td>
<td>Achyranthes aspera</td>
</tr>
<tr>
<td>Bupleurum s.</td>
<td>Cimicifuga racemosa</td>
<td>Abrocopia monniera</td>
<td>Boehmeriella spp.</td>
</tr>
<tr>
<td>Eleutherooccus s.</td>
<td>Coriolus versicolor</td>
<td>Ginkgo biloba</td>
<td>Chelidonium maj.</td>
</tr>
<tr>
<td>Emblica officinalis</td>
<td>Echinacea spp.</td>
<td>Hypericum spp.</td>
<td>Chionanthus xingyi</td>
</tr>
<tr>
<td>Panax spp.</td>
<td>Ganoderma spp.</td>
<td>Leonurus cardiaca</td>
<td>Curcuma longa</td>
</tr>
<tr>
<td>Schisandra chinensis</td>
<td>Geigeria floribunda</td>
<td>Lobelia inflata</td>
<td>Cynara scolymus</td>
</tr>
<tr>
<td>Scutellaria baicalensis</td>
<td>Lentinula edodes</td>
<td>Melia officinalis</td>
<td>Iris versicolor</td>
</tr>
<tr>
<td>Serrula repens</td>
<td>Polysiphonia tumosa</td>
<td>Passiflora incarnata</td>
<td>Sibiphrum marianum</td>
</tr>
<tr>
<td>Smilax officinalis</td>
<td>Tinospora cordifolia</td>
<td>Piper methysticum</td>
<td>Taraxacum officinum</td>
</tr>
<tr>
<td>Withania somnifera</td>
<td>Scutellaria lutea</td>
<td>Scutellaria latifolia</td>
<td>Verbena officinalis</td>
</tr>
</tbody>
</table>
Adaptogens demonstrate modulation of the physiological “switch on” and “switch off” systems of multiple body systems. Through the stress axis, the extracellular signaling system and the intracellular signaling systems, adaptogens have demonstrated profound effects on human health (Panossian et al., 1999). Additionally, there is research, although scant, to support some of the better known adaptogens in improving CFS (Baschetti, 1995; Ogawa et al., 1992; See et al., 1997; Singh et al., 2002B). Additionally, there is a significant volume of accumulated case studies of phytotherapists successfully dealing with CFS with adaptogens as a part of a treatment plan.

Adaptogens are often associated with plants rich in phytosterols such as protodioscin. Interestingly, Adimoelja (2000) claims that protodioscin, found in many plants, is biologically converted to DHEA. Although the author is skeptical of this claim, if this proves to be true it offers a much clearer understanding of some of the processes through which adaptogens work.

Nervines in some patients may also be key to support the neurological dysregulation of CFS. As mentioned above, the amygdala appears to play a key role in CFS. Amygdaloid upregulation perpetuates a physiology of withdrawal from the environment due to the unconscious perception of threat. This darkens the perceptive lens that a CFS patient uses to evaluate their world. Although there is a lack of research to support this statement, nervines likely offer downregulation of the amygdaloid response. The kavapyrones and lobeline both demonstrate modulation of amygdaloid activity in various models (Jassoff et al., 1993; Soprani et al., 1991). Many of these herbs do offer down regulation of the catecholamine systems (Butterweck, 2003; Leung and Xue, 2003; Schüle et al., 2001). Catecholamines, both peripheral and central, influence the readiness to perceive events as alarming. Since bodily events influence the perception of a threat such as changes in heart rate, blood pressure, respiration and facial muscles (LeDoux, 1996) many of the anxiolytics through their direct sedation of many of the arousal body systems may help in altering perception of threat to one of safety.

The gut should also be addressed as it has a relationship with multiple systems in the body. In the
authors opinion the gut is best viewed as an im
munoendocrine organ influencing messaging to the
other organs and body systems. The removal of dietary
antigens is an obvious necessity to reduce further oxidative
stress, immunological activation and excitatory signaling
to the CNS. Repairing damage to the mucusphelium
will improve mucusphelial detoxification and the
symptoms of CFS (Bland, 2000; Rigden, 1998). Hepatics
could also support detoxification in the gut and liver.
Improving hepatic elimination, downregulating Kupffer
cell activity, and decreasing the proinflammatory cytokine
load can all make improvements in CFS (Bland, 2000;

There are potentially hundreds of options when it
comes to phytotherapy. The above herbs listed in Table
4 are merely a short list of possible options. A sensible
strategy is the use of botanicals from various categories
of actions. Choosing herbs that modulate the function
of the immune system, the endocrine system, the CNS,
and hepatic detoxification drawn from adaptogens,
immunomodulators, nervines, and hepatics may offer
the best clinical strategy. Secondary categories may
include the lymphostrogues for further assistance in
improving immune function through the reticuloendothelial system. Gut demulcents and
astringents for protection and repair of the gut wall
could greatly aid this process. Repairing damage to the
mucusphelium has the potential of enhancing
immune function (Bland, 2000; Rigden, 1998).

What the author’s clinical experience suggests is no
one plant or one protocol is going to work for
improving CFS or the wider rubric of Functional
Somatic Syndromes. These patients come with layers of
complexity that the clinician must consider. Paying
attention to the patient and their psychosocial and
environmental context will give the clinician the best
clinical signs to guide protocols, which plants and
lifestyle suggestions to make first and provide for the
best chance at invoking a response. Above all, it should
be understood that a CFS patient has a different
physiological and psychological response to the
environment due to the complexity of their syndrome.
Since environmental context is so key in amygdaloid
response and health in general, serious consideration
must be given to inspiring the patient to create a healing
environment. Thus this necessitates care that is
individualized to the patient. Following a one formula
treats all CFS patients approach is unwise.

Nutritional factors in CFS
It should be remembered that CFS patients often don’t
have the will to eat and are therefore, quite likely
subclinically deficient, if not obviously deficient in a
number of nutrients. Therefore dietary counseling can
be of considerable benefit. Dietary modification has
demonstrated improvement in the signs and symptoms
of Functional Somatic Syndromes (Logan, 2003;
suggests the elimination of dietary excitotoxins (eg
MSG), decreasing the inflammatory milieu, building
positive colonic flora, decreasing microglial activation,
and reducing oxidative stress. Others have shown
success with improving GI and hepatic detoxification
and mitochondrial resuscitation by the use of
Antioxidants (Nicholson, 2003; Rigden et al., 1998). Antioxidants such as N-acetylcarnitine, tocopherols, coenzyme Q10, lipoic acid, melatonin and vitamin C have demonstrated efficacy (Lister, 2002; Kodama et al., 1996; Packer et al., 1997; Plioplys and Plioplys, 1997; Rigden et al., 1998; Singh et al., 2002).

The rebuilding of cytoplasmic and mitochondrial membranes through supplementing with ω-3 fatty acids could also be included in a nutritional strategy (Behan et al., 1990; Nicholson, 2003). Essential fatty acids (EFAs), particularly the long-chain omega 3 fatty acids (EPA & DHA), are key for healthy mitochondrial membranes and activity and offer the potential of lowered inflammatory potential. Ogawa et al (1992) found low levels of polyunsaturated fatty acids (PUFAs) in CFS patients with immunological abnormalities. Some patients have shown favorable responses to EFA supplementation (Behan et al., 1990; Nicholson, 2003). However, timing the introduction of EFAs may be important. Nicholson (2003) points out that if PUFAs are given to patients with substantial processes of oxidative stress before the oxidative stress is reduced, a “biological rancidity” can occur through the peroxidation of the PUFAs.

Magnesium has also improved CFS symptoms in some patients (Abraham et al., 1992; Cox et al., 1991; Russell et al., 1995). Erythrocytic magnesium (Mg++) has been found to be low in CFS patients. Supplementation with Mg++ improved energy function, cognition, and sleep while it decreased fatigue. However, at least in one study, these results were not sustained over time (Cox et al., 1991).

As previously mentioned, the HPA axis commonly demonstrates downregulation in CFS patients (Komaroff and Buchwald, 1998; Racciari et al., 2001) as well as low serum levels of dihydroepiandrosterone sulfate (DHEAS) (Cleare, 2003; McCoy, 1993). In attempts to treat the HPA axis deficiency that is so prolific in CFS, DHEA as a hormone precursor has been used. DHEA, when given in low doses, has shown improvements in patient’s symptoms (McCoy, 1993).

References
CDC. http://www.cdc.gov/ncidod/diseases/cfs/defined/defined5.htm
Cox IM, Campbell IM, Dowson D. 1991. Red blood cell...

Horm Behav 43, 21-30.
with chronic fatigue syndrome. Postgrad Med 79;927:59-60.
antioxidants in chronic fatigue syndrome in mice. Indian J
Singh A, Naidu PS, Gupta S, Kulkarni SK. 2002. Effect of
natural and synthetic antioxidants in a mouse model of
biological and electrophysiological parameters in the rat
Spelman, K. 2005. Philosophy in Phytopharmaceuticals: Oshiumi’s
Spelman, K., Bums, L. J., Nichali, D., Winters, N., Ottenberg,
S., and Tenborg, M. 2006. Modulation of Cytokine
Expression by Traditional Medicines: A Review of Herbal
Spelman, K., Duke, J. A., and Bogenschutz-Godwin, M. J.
2006. The Synergy Principle in Plants, Pathogens, Insects,
Herbicides and Humans. In “Natural products from
plants” (F. B. Kaufman, ed.), Vol. 2a, pp. 475-501. CRC
Press, Boca Raton, Fla.
Torpy DJ, Papavasiliou DA, Lottikas AI, Wilder RS, Chrousos
GP, Pilkamer SR. 2000. Responses of the sympathetic
nervous system and the hypothalamic-pituitary-adrenal
Vojlan A, Laio CW. 1999. Interferon-induced proteins are
elevated in blood samples of patients with chemically or
viral induced chronic fatigue syndrome.
stress on dendritic arborization in the central and
Vyas, A., Mitra, R., Shankaranarayanaya Rao, B., and Chatterji,
S. 2002. Chronic stress induces contrasting patterns of
dendritic remodeling in hippocampal and amygdaloid
Wessely S, Nimnuan C, Sharpe M. 1999. Functional somatic
and associations of fatigue syndromes and mood
disorders that occur after infectious mononucleosis.